Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

نویسندگان

  • Soon Won Choi
  • Jae-Jun Kim
  • Min-Soo Seo
  • Sang-Bum Park
  • Tae-Hoon Shin
  • Ji-Hee Shin
  • Yoojin Seo
  • Hyung-Sik Kim
  • Kyung-Sun Kang
چکیده

Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. A microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Study of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells

In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...

متن کامل

Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions

Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...

متن کامل

Differentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375

Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...

متن کامل

Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203

Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sourc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017